Just in case...
Nov. 18th, 2006 11:56 pmDoes the sequence
2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, ...
look familiar to anyone? I need to figure out how to generate it.
EDIT: Never mind, its obvious. Each element is one more than double the previous. Duh. I should have seen it earlier.
Later Edit: It turns out this sequence is known as the Thâbit ibn Kurrah Numbers, and are generated by the formula 3*2^(n-1)-1. Its the last puzzle piece I needed to complete
sps's logarithmic thinning algorithm.
2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, ...
look familiar to anyone? I need to figure out how to generate it.
EDIT: Never mind, its obvious. Each element is one more than double the previous. Duh. I should have seen it earlier.
Later Edit: It turns out this sequence is known as the Thâbit ibn Kurrah Numbers, and are generated by the formula 3*2^(n-1)-1. Its the last puzzle piece I needed to complete